
JOURNAL OF COMPUTATIONAL PHYSICS 6, 483-509 (1970) 

Finite Difference Methods for the Fokker-Planck Equation* 

JAMES C. WHITNEY 

Columbia University, New York, New York 10027 

Received December 11, 1969 

Two methods are developed for numerical solution of the time-dependent Fokker- 
Planck equation. First, a finite difference scheme is constructed which has the property 
of simultaneously conserving total system mass, energy, and momentum throughout the 
interior of velocity space, thereby reducing nonconservation errors to boundary contri- 
butions only. Second, the Fokker-Planck collision operator is expanded in Legendre 
polynomials and reduced to an equivalent system of one-dimensional problems. The 
expansion is carried out to all orders and is mathematically exact ; no terms are neglected 
or linearized. The resulting system of one-dimensional equations is given explicitly. 
Both these formulations are given for the case of two-dimensional azimuthally symmetric 
distribution functions. As a test of the methods, the thermal equipartition of an isotropic 
deuterium-electron plasma is computed numerically. Over a range of initial conditions 
from T,/Te = 0.01 to T,/TD = 100 the electron and ion temperatures obtained from the 
Fokker-Planck equation agree to within 6 % with those obtained from the Maxwellian 
model given by Spitzer. 

1. INTRODUCTION 

Numerical solutions of the time-dependent Fokker-Planck equation have been 
used for many years to study collisional processes in plasmas. Among the many 
problems encountered in solution of this equation, two are of particular impor- 
tance. First, the previous numerical treatments [l-7] have used difference schemes 
which violate the conservation laws of mass, energy, and momentum, even though 
these are intrinsic properties of the equation itself. Nonconservative schemes can 
introduce significant error unless the grid spacing is chosen very fine. Second, the 
Fokker-Planck collision operator is very complex in more than one dimension. 
The multi-dimensional operator can, in principle, be reduced to a coupled set of 
one-dimensional problems by expanding the angular dependence in spherical 
harmonics. Although the first two terms of this expansion, in a somewhat simplified 
form, have been used by several authors [8-lo], the correct and explicit form of 
the general term has not previously been obtained. 

* Part of a dissertation submitted in partial fulfillment of the requirements for the degree of 
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In Section 2 of this paper we develop a finite difference scheme for the two- 
dimensional axially symmetric Fokker-Planck equation which has the property 
of conserving total system mass, energy, and momentum throughout the interior 
of velocity space independent of the mesh. Any conservation errors are then due 
only to points on the boundaries. If desired, the boundary errors for any one of 
these moments (but not all three together) can be eliminated by suitable choice of 
boundary conditions. Even so, we can reasonably expect that the boundary errors 
will be extremely small when compared to the error which accumulates throughout 
the whole velocity space for a nonconservative scheme. Thus the conservative 
scheme offers a significant increase in accuracy and pays dividends for those 
problems in which it has been necessary to restrict the grid spacing to keep con- 
servation errors small. 

In Section 3 we reduce the two-dimensional Fokker-Planck equation to a 
system of one-dimensional equations by expanding the collision operator to all 
orders in Legendre polynomials. No terms are neglected or linearized. The final 
system of equations is expressed in a compact form which is useful for numerical 
calculations. While the one-dimensional schemes do not have the conservation 
properties of the more exact two-dimensional method, they greatly reduce the 
amount of computation and are well suited for problems in which the distribution 
functions are close to isotropy. 

In Section 4 we apply these numerical methods to compute the long-time 
equipartition of a deuterium-electron plasma in which T, # TD . We find that 
over a range of initial conditions from T,/TD = 0.01 to T,/T, = 100 the simple 
relaxation model of Spitzer [I l] (which assumes Maxwellian distribution functions) 
gives relaxation times in remarkably close agreement with the Fokker-Planck 
results. 

2. CONSERVATIVE DIFFERENCE SCHEME 

The Fokker-Planck equation for a spatially uniform plasma has the form 

where the subscript LY denotes particle species. In Cartesian coordinates the collision 
operator C, is [12] 

where 

(3b) 
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h,(v) = j ( v - v’ I-lfs(v’) dv’, (3c) 

&W = J I v - v’ 1 &(v’) dv’, (34 

r, = +$ln A. CW 

The /3 summation in Eqs. (3) includes all particle species. The quantity A is the 
ratio of Debye length to the mean impact parameter for 90” scattering [ll], 

A = & (E&y”“. 

The conservation laws for mass, momentum, and energy are expressed by the 
relations 

s C,cf) dv = 0, 

cl m,vC,(f) dv = 0, (4) 

; 1 4, I v I2 C.(f) dv = 0. 

It is not difficult to show that Eq. (1) has these properties. However, when the 
Fokker-Planck equation is solved numerically the collision operator is replaced 
by a finite difference approximation (C,& defmed on a set of discrete points vj . 
Integrals are replaced by finite sums. The conservation laws then take the discrete 
forms 

F 7 m,vj(Qj Av = 0, (5) 

F 7 tm, I vj I2 (CA Av = 0. 

Unfortunately, the constraints (5) cannot be rigorously satisfied by any finite 
difference approximation. In general the right sides of Eqs. (5) are nonzero and 
consist of two sorts of terms: Contributions from the interior points of velocity 
space and contributions from the boundaries. The boundary terms are unavoidable; 
they are a consequence of using a finite and discrete velocity space. The boundary 
terms associated with any one of the equations (5) can be made to vanish by 
choosing suitable boundary conditions on the difference scheme. Boundary terms 
from the other two equations will remain. However, these terms are a very small 
part of the total conservation error. The great bulk of the error comes from points 
in the interior of the space and arises because the elementary fluxes of mass, 
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momentum, and energy between different elements of velocity space do not, in 
general, cancel unless the cell size becomes vanishingly small. 

In this section we develop a discrete representation of the collision operator in 
which the interior errors vanish regardless of the cell size. The conservation laws 
are properties of the difference scheme in the same way that Eqs. (4) are properties 
of the exact Fokker-Planck equation. The equations (5) are then satisfied except 
for the small boundary terms. To construct this scheme we transform the collision 
operator to spherical coordinates and write it in a particular conservation law 
form. This conservation form is then descretized to yield a conservative difference 
scheme. 

Conservation Form of the Collision Operator 

We first write Eq. (1) in dimensionless form by defining the dimensionless 
quantities 

(64 

The constants o0 and c, are determined from the initial conditions f(v, 0) by using 
the definitions of number density and energy, 

(6b) 

Here n,(O) and Z&(O) are the initial values of number density and total system 
energy. The dimensionless quantities Z, and .Z, are 

UT> = j i& 4 dv, 

JJT) = j [ v jz&v, T) dv. 

The constant to in Eq. (6) is defined by 

to = ~03/~&? 9 (7) 

which is approximately the electron-electron collision time [ll]. In terms of 
these dimensionless variables the Fokker-Planck equation becomes 
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The dimensionless functions I?= and e, are given by 

where 

and 

(9b) 

rz,(v) = p&q / v - v’ I-1 dv’ 

PC> 

&3(v) = 1 j&q / v - v’ j dv’ , 

We shall hereafter omit the caret and regard all quantities as dimensionless. 
We next transform Eq. (8) to spherical polar coordinates in velocity space. 

Since the algebra is straightforward we will not give the details here [13]. The 
transformed equation is written in terms of the variables v = 1 v ) and p = cos 6, 
where 8 is the polar angle in velocity space. We also define the dimensionless 
functions 

%(V, t-b 4 = v2f,(v, l-4 7). 

Then the azimuthally symmetric Fokker-Planck equation can be written in the 
conservation form [ 131 

The Fokker-Planck coefficients K, , P, , D, , R, , and S, are given by 

1 a2G 

P, = v % + 2 r,,$, , 
6 
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s = (1 - P2) a2Ga 
a 

V2 [ au ay 
-!2Ei, 

v alu. I 

Since the right side of Eq. (10) is a pure divergence in velocity space, we can 
obtain a mass-conserving difference scheme by simply replacing the derivatives 
with centered finite differences. However, such a scheme will not conserve energy 
or momentum unless the coefficients (11) are computed in a particular way. Our 
method is to expand the collision integrals in Legendre polynomials, differentiate 
the expansions, and substitute the results into Eqs. (11). We can then discretize (10) 
in such a way that all conservation laws are satisfied. The expansions of the 
integrals (SC), in the case of azimuthal symmetry, have been given by Rosenbluth, 
MacDonald, and Judd [12], 

where 

h,“(v) = (2r4; 1) v--l--l 
[ s 

Y 

i 

co 
o v’~u~~(~‘) dv’ + vz v’-~-~z.@(~‘) dv’ , y 1 

g8”(v) = & [& (v-Z-1 j: v’z+2u8Z(v’) dv’ + vzf2 /; ~‘-~--lu~~(v’) (iv’) 

- &j +-l ( s 

Y m 
v’~u~~(v’) dv’ + vz v’~-~u~~(v’) dv’ , o s Y )I 

21+ 1 

1 

+I 
z$(v’) = -j- PzW> dv’, P’) 4-J 

-1 

(14) 

The Fokker-Planck coefficients (11) now follow directly from Eqs. (13) and (14), 

K& CL) = zfo pz(d c ra8 5 6 gsz, 6 
Wb) 
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+ p& (P&l - Pz,,) [l.8 (f -& gsz - $ &Jz) - ka8 $ haz] 13 
(154 

_ 41 -  1)  + (1 + 1x1 + 2) 
i (21 - 1) (21 + 3) ) 

pz + 4l -  1)  p _ 

(21 - 1) z 2 1 1 g81 

2v4 

where 

m 

y v’-~-~u~~(v’) dv’ - (I + 1) v--~-~ j-1 v%~~(v’) dv’l, 

a 
zgs”=&~&-$(f+2)vz+1~~v’-z-1uB~(v’)dv’ 

- (I + 1) v-l--2 s’, v’~+~u~~(v’) dv’] 

v’~-~u~~(v’) dv’ - (I - 1) v-l j-1 v%,+(v’) dv’] 1, 

0 

w - 1) -l-l ” 
-(21-- o c s 

v’~u~~(v’) dv’ + Y~-~ 

Finite Difference Scheme 

When the representation of the Fokker-Planck equation given by Eqs. (lo), 
(15), and (16) is descretized the conservation laws are preserved independent of 
the mesh size. We define the distribution functions at the discrete points 

i4 = i(dd, i = -M ,..., 0 ,..., M; WG-4 = 1, 
vi = j(dv), j = 1, 2 ,..., N + 1, (17) 
T* = n(Ll7), n = 0, 1, 2 ,... . 
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Figure 1 shows the coordinate grid. The velocity space consists of a set of interior 
points 

i = --M + l,..., A4 - 1, 

j = 2,..., N, 
(18) 

and a set of boundary points, indicated by dashed lines in Fig. 1. The difference 
scheme is a closed system of equations for the values of U, at all interior points. 
The boundary points are only used to establish boundary conditions. For any 
function on this grid we use the notation F(pi , vj , T”) = Flj . Time derivatives 
are approximated by forward difference quotients and velocity derivatives by 
centered differences, 

aF 
(  )  -ST i,j 

w 6,F = +-(F;;l - F&9, 

aF n 
( 1 X i,j 

m 6°F = &(F,:,+, - F&), 

aF IL 0 ap i.j 
m 6,F = & (Fi+,,j - FEl,j), 

a2F n 
0 w i,i 

m Su2F = (& - (Fcl,j - 2F[j + lizr"-l.j>, 

j’2 j=N 

(19) 

FIG. 1. Finite difference grid for Eq. (21). 
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Integrals are approximated by finite sums over the set of solution points, 

+1 m s s M-l N 

F(p, v) dp dv m 
-1 0 

i ” F(P, v) dv M j2 FM 4 
0 

(20) 

s m Fb., 4 dv - k$ Fi.k Av. Y 
Using these definitions we can write Eq. (10) in the finite difference form 

S,(u,) = s,z(u,K,)“+l + 6, (+-)“” - 6, ($q+l + sw(U,D,)n+’ 

+ s,,yU,R,)n+l + sYSu(ULIS,p+l. (21) 

The coefficients in Eq. (21) are obtained from (15) and (16) by truncating the 
polynomial expansions to a finite number of terms and computing integrals 
according to (20). For example, Eq. (15a) becomes 

where, from (16c), 

- (1 + 1) v;‘-~ i2 v~+~(u~“);” Av] 

- - [h-l 5 v;-~(u;);+~ Av - (I - 1) vi’ i v~‘(u~‘);+~ Av] 1 
(2111) k=j k=2 

The quantities (uaz)~” are obtained from Eq. (14), 

(%zx+l = + Tzz+l W~(UB)Z:‘AP. (22) 

The other coefficients of Eq. (21) are computed in the same way. 
The integer L used to truncate the coefficient expansions is chosen large enough 
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that terms of higher order have negligible value. In practice this number will 
depend on the anisotropy of the distribution functions. We shall prove in the next 
section that the mass and energy conservation properties of the scheme (21) are 
completely independent of the number of terms taken in the expansions. In order 
that the scheme conserve momentum, however, one must choose a value of L 
large enough that higher-order terms are negligible. 

It is important to note that in the scheme (21) both the distribution functions 
and the Fokker-Planck coefficients are computed on the same time level. As we 
shall see in the next section, this is necessary for conservation of momentum and 
energy (but not for mass conservation). Equation (21) would also be conservative 
if written in purely explicit form, with all quantities on the right evaluated at time 
step II. The implicit form is preferred for most problems because it is stable regard- 
less of the time step. 

Proof of Conservation Properties 

We now prove that the scheme (21) conserves the integrals for total system 
mass, energy, and momentum throughout the interior of velocity space independent 
of dv and d+ The only errors will then be from points on the boundary. Although 
the proof can be given for a plasma with any number of charged species the algebra 
required tends to obscure the results. Thus, for clarity, we shall give the proof 
assuming that all particles have identical mass. Hereafter we set 01 = /3 and omit 
species subscripts. The time superscripts will also be deleted. Summations over 
the interior points (18) will be abbreviated as 

Mass conservation 

To show that the system (21) conserves total mass, we integrate the collision 
operator over the velocity space (18), 

Because the difference operators in Eq. (23) are all centered, each term on the 
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right becomes a simple telescoping series which vanishes identically for all points 
interior to the region (18); that is, for 

i = --M + 2,..., M - 2, 

j = 3,..., N. 

The summation (23) is therefore zero except for a contribution from the boundary 
points of (17) and their adjacent interior points. Thus we have 

Av 4 C C Ci.i = & , (24) 
z j 

where Rb is called a boundary remainder. 

Energy Conservation 
To show that (21) conserves total energy inside the region (18), we multiply 

by vj2 and integrate, 

Using the definitions (19) and the relation v;+~ - v,‘-~ = 4vjAv, we can reduce 
this to 

T T V?ci,i AV AP = 7 C 2CUPh.j AV AP + Qb 3 (25) 
j 

where Qb is a remainder which only involves boundary points. The term containing 
(UP)i,j is evaluated from Eqs. (15), (16), and (20), 

Using the definition (22) and exchanging the dummy j and k indices in the second 
double summation, we find 

C C z(uP)i,j Ap AV = 8~ go & [t $, - 5 5 ] ~jzv~z-l~~z~~“(A~)“. 
z j 3-2 k--3 k=2 j=2 
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This expression is identically zero for every value of I because the two double 
summations cover the same set of points. Therefore energy is conserved except 
for a remainder Q,, due to boundary points. 

Momentum Conservation 

Because we are considering azimuthally symmetric distribution functions, the 
only component of macroscopic momentum is along the polar axis. Multiplying 
Eq. (21) by PiviAv Ap and using the definitions (19), we obtain 

where Mb is a remainder involving boundary points. To evaluate (26) we first use 
Eqs. (11) to obtain 

T T /-WjCi.j AP AV = AP AV 1 C Ti.j + MO 3 
1 j 

where 

The quantity T,,j is obtained from Eqs. (15), (16), and the identities [14] 

(1 - P”> g pz = zz; ;; [PI-1 - P,,,], 

7 + 1) pz,, + zpz-1 ; (21 + 1) PPz(PL) = 

we then find 

AVAP II C T,,i = dv$ f,G 
1 j 

, M-l 

( 5’ PdpJ z+ A/L) Zv;-’ @-‘u,’ Av 
-M+l 

- ( C Pi+,(pi) ui,j Ap) (I + 1) “izw2 k$2 ‘klUi “1. 
-M+l 

Now if we renumber the terms in the second double summation so that Z -+ Z - 1, 
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exchange dummy j and k indices in this term, and apply the definition (22), we find 

The first quantity in brackets is identically zero for every value of 1 because the 
two double summations on j and k cover the same set of points. The second 
quantity in brackets is negligably small if L is chosen large enough. Consequently, 
(21) conserves momentum inside the region (18). 

3. REDUCTION TO A SET OF ONE-DIMENSIONAL PROBLEMS 

The difference scheme of the previous section is particularly suitable for treating 
long-time problems in a highly anisotropic plasma. However, it is a two- 
dimensional system and requires a large amount of computation. In many cases 
the plasma is not highly anisotropic and the integration covers only a few collision 
times. For this class of problems it is possible to achieve a great simplification by 
expanding the angular dependence of the collision operator in Legendre poly- 
nomials. This expansion reduces Eq. (10) to an infinite system of one-dimensional 
problems. When the distribution functions are close to spherical symmetry the 
system can be truncated to a small number of terms, thus greatly reducing the 
amount of computation. 

Expansion of the collision operator was suggested in a paper by Rosenbluth, 
MacDonald, and Judd [12], but the reduced equations were not derived. The 
zeroth- and first-order equations have been given by several authors [S-lo]. 
Attempts to find the general term have been made by Shkarofsky [15] and 
Oliphant [16]. In order to obtain manageable expressions, Shkarofsky neglects 
products of electron and ion distribution functions above first order. Oliphant’s 
results are only formal because the final equations are given in terms of complicated 
angular integrals which cannot be evaluated in closed form. 

By starting with our Eq. (10) we can obtain the exact expansion of the collision 
operator to all orders. No complicated integrations are required and the resulting 
system of one-dimensional equations has a very compact form. The more general 
three-dimensional case is a direct extension of this work. 
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Expansion of the Collision Operator 

Suppose that the collision operator C, and the distribution functions u, are 
both expanded in Legendre polynomials, 

w, P, 4 = f ~A-4 ca+, 7). (27b) j=o 
Then by the orthogonality of the Legendre polynomials the Fokker-Planck 
equation becomes 

; %%‘, 7) = ca+‘, 7% I = 0, 1, 2 )... . (28) 

Our object is to find the components C?. We procede by first expanding the Fokker- 
Planck coefficients (11) completely in terms of Legendre polynomials. The terms 
U& , etc., which appear in Eq. (lo), then become products of infinite series. The 
product series are reduced to simple series with Clebsch-Gordon coefficients, and 
the general term of (27b) is sorted out using summation diagrams. 

The expansions of the Fokker-Planck coefficients are obtained from Eqs. (15) 
by renumbering terms in the series and using the recursion relation [14] 

We find 
(21 + 1) LL~ZW = (1 + 1) pz,, - IPI-1 * 

(2% 
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D,Q) = CD;+’ - @L-l + Ply + (I + 1) Yifl, 

@cx”(u) = (21 + 1) B 1(1 c [GB (f -& g2 - -$ g,.?) - km, $ hsz], 

R,Z(u) = r:+z + zaz + Lp, 

(I + l)(l + 2) 
ALxz(u) = (21 + 1)(2Z + 3) 5 c raB [$ gsz - & ; &Jz], 

(30) 

2Taz(u) = C r,, [( 1 - (’ + 1)2 
- 5 (21 + 1)(21 + 3) (21 + 421 - 1) 1 

41 + 1) P(P - 1) 41 + 1j2 (1 + 2) 
+ ((21 - 1)(2Z + 3) - (21 + 1)(21 - 1) -(21 + 1)(21 + 3) 

&Z(u) = $b:+l - $p, 

From Eqs. (27a) and (29), the terms of Eq. (10) become 

%pu = f 2 pZ(p,) pk(d &k(V) nwz(Z$ 
k=O Z=O 

(31) 

etc. 
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These product series can be reduced to simple series by the relation 

PRP, = c CjkZPj . 
j=fk-11 

(32) 

The constants cjkZ are the squares of the Clebsch-Gordon coefficients [17], 

CikZ = 
(2j + 1) g! (j + k - l)! (k + 1 - j>! V + j - k)! 

(2g + l)! (g - j)!2 (g - k)!2 (g - I)!2 ’ (33) 

where 

g = Hj + k + 0. 

The ciKz are symmetric in the first two indices and are zero unless g is integral and 
/ k + 11 > j 3 1 k - I 1. Equations (31) now become 

u,K, = f t lkiz’ Cjkzpj%kK,z, 
k=O Z=O i=lk-11 

(34) 

etc. 

To sort out the Pj terms from (34) we use the summation diagram, Fig. 2. This 
diagram is a map of the (j, I) plane showing all points covered for a fixed value of k. 
From the figure we see that 

~0 lk+Zl m Ilc+jl 

cc =c c* 
1=0 G/k-l1 j=O Z=lk-j/ 

FIG. 2. Summation diagram for Eq. (39). 
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Thus Eq. (34) can be written 

499 

CjkPakKhl * 1 
Since all the expressions (31) have this form, we dehne the notation 

m Ilc+jl 
bK]i = c c cjktu,k&z, 

k=O Z=[k-jl 

[up]; = i ‘Y’ c,kz%kalz, 
k=O Z-lk--jl 

. 

etc. 

(35) 

Then the Fokker-Planck equation (10) can be written 

(36) 

where 

To complete the reduction of the Fokker-Planck equation we must expand 
the derivatives aP,/ap and a2Pjlapz in Legendre polynomials and sort out the Pi 
terms from (36). First consider the term 

(38) 

on the right side of Eq. (36). From the recursion relation [14] 

A- PI,, aP - + Pz-, = (21 + 1) Pz 

581/6/3-II 
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it follows that 
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$ Pj = y (1 + 24 P, if j is odd, 
k=0,2,4 

+Pj= ‘2 (1+2k)P, if j is even. 
k=1,3.5 

Thus the expression (38) is 

( g y + f y ) (1 + 24 PkV,j. 
j=1,3.5 k=0,2,4 j=2,4.6 k=1,3,5 

Now using the summation diagram, Fig. 3, we can rewrite this as 

j 
7 

X = j EVEN 

0 2 4 6 

FIG. 3. Summation diagram for Eq. (38). 

Exchanging the dummy j and k indices and adding, we find 

Pj) V,j = 2 (1 + 2j) Pj f V,“. (39) 
j=O.l,Z k=j+l.j+3 
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The second derivative term of Eq. (36) can be handled in a similar way. Using 
Eq. (39) we first write 

where 

@,j(v) = (1 + 2j) f Wmk; 
k=j+l.j+a 

differentiating Eq. (40) and using (39) a second time, we have 

f (6 Pj) W,i = f Pj(l + 2j) CDak. 
j=2 j=O k=j+l,j+3 

To simplify Eq. (41), consider the double summation 

(1 + 2k) W,l. 
k=i+l.i+3 L=k+l,k+3 

(40) 

(41) 

(42) 

Using the summation diagram, Fig. 4, the right side of Eq. (42) becomes 

wmz ( y (1 + 2k)) = g $(l - j)(Z + j + 1) w,t. (43) 
l=jiZ.jiP k=j+l,j+2 1=3’+2,3’+4 

k=j+3 

k:j+l 

t I I , , , , , 
Z=k+l I-k+3 

2 

FIG. 4. Summation diagram for Eq. (42). 
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Now substituting Eqs. (39) and (43) into (36) we have 

f u,j(v, 7) = U,i + (1 + 2j) i VC" 
k=5+l.j+3 

+ (1 + a> f WakE9tk - jXk + j + 1). w 
?c=i+z.i+4 

Explicit Equations 

Equation (44) is the exact expansion of the Fokker-Planck equation (10). To 
treat this system numerically we keep components u1 up to some order L and 
assume that all higher terms are negligable. The system is then written out explicitly 
by using equations (30), (33), and (35). The first three equations of the chain are 
(omitting species subscripts) 

+ & +p(~l + 9) + d(so + 9) + ~ysl + 0.27222s*)) 

+ u”[D1 + D3 + 3R2 + 3R*] + u’[D” + D2 + 2R1 + 1.5238R3] 

+ u2 [D1 + 3R” + ; R2 + 0.27222D3 + 0.1777R4], VW 

~1 ( KO-f10+;K2-$n2) +;u2(K1-D1) II 
+ g /3u?s” + Ul(2S2 + 1.3571S3) + 2.42 (3SO + ; s2)1 

+ @(3D2 + 15R3) + 1.420~ + 9R2 + 1.3571D3 + 0.31666R4) 

+ u2 (3D” + 9R1 + ; D2 + ; R3), (43 
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~u2=~~uOK2+~ul~+u2(K’+~K2)~ 

+ g 1; [uO(K2 - IP) + f 3(P - IP) + 2.42 (KO 

+ g (5uOS3 + 3ulS2 + uy3s1 + 0.07539S3)) 

+ uO(5D3 + 35R4) + u’ (302 + ; R3) 

+ u2(3D1 + 3R2 + 0.07539D3 + 0.1325R4), 

- lP+;K2 - 

503 

; n2j1 

(45c) 

where u3, u4,... are assumed negligibly small. In computing the coefficients Kz, IF, 
Dz, etc. from Eq. (30) we omit components higher than 1 = 2. 

When the distribution functions are very close to spherical symmetry so that 
u” > u1 > u2, etc., the system (44) can be simplified by dropping terms of higher 
order in each equation. The equations are then decoupled and all equations above 
zeroth order are linear. 

The one-dimensional system (44) can be converted to finite difference form with 
the discrete approximations (19) and (20). The resulting difference equations will 
not rigorously satisfy the conservation laws except when the distribution functions 
have spherical symmetry. In that case the zeroth-order equation (45a) and the 
collision operator (10) are identical and both methods will conserve mass and 
energy. 

4. RELAXATION OF A DEUTERIUM-ELECTRON PLASMA 

As an application of our numerical methods we compute the thermal equiparti- 
tion of a deuterium plasma in which the electron and ion temperatures are initially 
unequal. This problem was first considered by Killeen, Heckrotte, and Boer [4]. 
These authors assumed the deuteron distribution to be stationary in time and 
only solved the electron Fokker-Planck equation. Their results are therefore valid 
only for times much shorter than the equipartition time. They found that the 
energy transfer rate from hot deuterons to colder electrons was somewhat slower 
than predicted by the Maxwellian approximation of Spitzer [ll]. In a subsequent 
paper, House and Swartztrauber [5] solved coupled Fokker-Planck equations for 
both ions and electrons. They had serious difficulty satisfying the conservation 
laws and were only able to obtain solutions for about one D-D collision time. 
It is therefore difficult to draw conclusions about the equipartition time from 
their paper. 

581/6/3-II* 
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Our object is to obtain long-time solutions of the Fokker-Planck equations 
for electrons and deuterons when T, f Ti . For simplicity we consider isotropic 
distribution functions 

4 = 44% 71, 
ug = UD(V, T). 

The collision operator (10) and the zeroth-order term of the system (45) are then 
identical, 

The Fokker-Planck coefficients are 

pe = jm (Us + cd $ - ; 1’ (u, + pCui) dv’, Y 0 

Pi = p2 jm (u, $- CUE) $ - t j”, (u, + PCUi) dv’, 
” 

where p = (me/m,) = l/3671 and C = c,Icn with c, and cD defined by Eq. (6). 
The conservative difference scheme for Eqs. (46) is 

S&) = &,yu&)“fl + 6, (*),+l - 6, (*)“+: 

with coefficients given by 

wjn+l = + j2 (u, + CUX” v: Lb + ; g, (24, + a&” $- ) 

(47) 

(48) 

(Pe),“+l = g (24, + cu,.);+1 k - 
k=j vk 

(pi);+1 = 
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Dimensional quantities are obtained from the solutions Uj using Eqs. (6) and the 
relations 

(@a) 

WW 
(49c) 

(494 

where 

z,(T) = 47’7 5 (I&); dV, 
j=2 

J,(T) = 437 i uj”(um)y Av. 
j=2 

The scheme (47) will conserve the integrals for number density (49b) and total 
energy (49~) except for small contributions from boundary points. There is no 
macroscopic momentum because of the spherical symmetry. As we mentioned 
in Section 1, it is possible to eliminate either the energy or mass boundary remainder 
with suitable boundary conditions. In the present problem we choose to have 
exact mass conservation. To find the appropriate boundary conditions we numeri- 
cally integrate the difference scheme (47) to evaluate the mass boundary remainder 
Rb for each species. Setting Rb = 0 yields the boundary conditions (we omit the 
species subscripts) 

& mQN+l - w%l + ; [( u[K; p1 ),,, + ( uw; p1 ),I = 0, 

& KW, - (UK),] + ; [( uK ; p1 ), + ( u[K j- p1 ),I = 0. 

These conditions, which are equivalent to stopping the mass flux at the boundaries, 
close the system (47) and insure rigorous mass conservation. 

Method of Solution and Numerical Results 

To solve the system (47) one must know the Foklcer-Planck coefficients at 
time n + 1. Although these could have been obtained by extrapolation, in the 
present calculations we used an iterative procedure: The coefficients were first 
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computed from the known values uj n. Then (47) was solved as a linear system to 
give provisional values for $+l. The provisional values so obtained were used to 
recompute the coefficients and, holding time constant, (47) was solved again. The 
cycle was repeated until coefficient values ceased to change. We then advanced 
to the next time step. In practice, three iterations per time step gave very accurate 
convergence. 

The equations were solved for a large number of different initial electron and 
ion distribution functions with initial temperature ratios in the range T,/T, = 0.01 
to Te/Ti = 100. All these calculations lead to the same result: The rate of thermal 
equilibration between electrons and deuterons is virtually independent of the 
initial shape of the distribution functions and depends only on their energy. 

To illustrate a typical calculation, we take the electron distribution to be 
Maxwellian and the deuteron distribution to be a nearly monoenergetic Gaussian 
with a temperature ten times that of the electrons, 

u&v, 0) = v2 exp[- 1.5~~1, 
ui(v, 0) = v2 exp[-(v - .O52)2/(.OO2)2]. 

These functions were defined at 150 points on the velocity axis v = 0 to v = 5, 
where v = 1 corresponds to the thermal speed of electrons at I = 0. Because the 
deuteron distribution is much narrower than that of the electrons, the grid points 
were spaced closely together near v = 0 and much further apart near the tail of 
the electron distribution. The difference equations were solved through 1180 time 
steps using an increment LIT = 15 for the first 120 steps and 4~ = 25 for the 
remainder. Problem time was 48 seconds on an IBM 360/95 computer. Total 
system mass was constant to within four parts in 1012. Total energy of the system 
varied by less than five parts in 105. The error in mass conservation is due only 
to finite computer word size (the IBM/360 carries about 16 decimal digits). The 
energy conservation error is somewhat larger and reflects the cumulative size of 
the energy boundary remainder. Both these errors are negligible in the present 
problem. 

Figure 5 shows the time history of the distribution functions. We have plotted 
the functions f = u/v2 so that the final Maxwellian shape can be seen. The vertical 
scale is in arbitrary units. Figure 6 shows the temperature history of the plasma, 
computed from Eq. (49~). We can express the dimensionless time in seconds using 
Eq. (4% 

t = 0.60 x 1023 [:E);” ) 7 sec. 
e 

For comparison, the e-e collision time given by Spitzer [l I] is 

(50) 

t+, = 1.64 x 1O23 s sec. 
e 
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Thus, initially, two units of 7 correspond to one e-e collision time. However, 
t,-, increases nearly tenfold as the electron energy increases. Tables of In A given 
by Spitzer [ 1 l] allow the conversion of Eq. (50) to real time. Taking typical theta 
pinch parameters [5], /CT,(O) = 300 eV, kTi(0) = 3 keV, and n, = 1016, each unit 
of T equals 5.2 nsec and the total problem time, T = 28,300, is 1.48 x lo-* sec. 
We note that the deuteron distribution has relaxed to Maxwellian by T = 5300 
or 2.8 x 1O-5 sec. This agrees well with the Spitzer D-D collision time [ll], which 

,%I DISTRIBUTION ELEC TRoN DISTRIBUTION _. -.- ._ 

FIG. 5. Electron and ion distribution functions at different instants during the thermal 
equipartition. Vertical scale in arbitrary units. 

is about 3 x 10-b sec. House and Swartztrauber [5] for the same initial conditions 
give a deuteron relaxation time of 6~ set, which is incorrect by nearly an order 
of magnitude. 

It is interesting to compare the thermal relaxation rates obtained from the 
Fokker-Planck equation with a simple model proposed by Spitzer [ll]. If one 
assumes that the distribution functions are always Maxwellian during the relaxa- 
tion, then the temperatures T, and Ti obey the equation 

dTe Tp, - Ti 
- = [T, + (m,/mJ Ti]3’2 ’ dr 

where the parameter T is related to the time t by 

(51) 
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This equation can be integrated quite simply if we have T, + Ti = To = constant. 
In the present problem we can neglect the term (m,/mJ Ti in the denominator 
of (51). Then the solution is 

T = 3 [Tz'2(0) - T,"'"(r)] + '2 T,,[T,"2(0) - T:'"(r)] + k (2)s'2 In [-$$-I, (52) 

where 

Q(T) = {(To/2)1'2 + T:'"(7))/{(To/2)"" - T,""(T)}. 

The solution (52) is plotted alongside the Fokker-Planck results in Fig. 6. The 
greatest difference between the curves is 1.3 % of the electron temperature, occur- 
ring at 7 = 210. This remarkable agreement between the Spitzer model and the 

1.0 I I I I I I I I I I I I I I. 

- FOKKER-PLANCK SOLUTION 

---- MAXWELLIAN APPROXIMATION 

.6 - 
DEUTERONS 

01 ” ” ” ” ” ” “1 
0 IO4 2x IO4 3 x IO4 

T 

FIG. 6. Electron and ion thermal energy as a fraction of the total system energy Et during the 
equipartition. 

Fokker-Planck solutions held for all cases tested from To/T@ = 100 to 
T,/T$ = 0.01. The maximum difference between the two models was 6 % of the 
electron temperature during a computation in which T,(O)/T,(O) = 100. The lower 
temperature was obtained from the Fokker-Planck equation. We conclude that 
the Spitzer model gives a simple and accurate means for calculating thermal 
relaxation in an isotropic plasma. 
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